US ERA ARCHIVE DOCUMENT

Ontario Ministry of the Environment Sewage Treatment Plant (STP) Studies

Great Lakes Binational Toxics Strategy
Integration Work Group Meeting
December 1, 2010

Outline

- ▶ 2004/2005 48 STP Survey
 - MOE survey of treatment plants in Ontario
- ► Literature Review treatment technologies
 - MOE/CH2MHill review
- ► 2009 2011 Treatment, Chemistry & Toxicity Study
 - MOE/Environment Canada/ University of Windsor/ University of Waterloo study

48 STP Survey

- ▶ Description:
 - 48 STPs in Ontario monitored from 2004-2005
 - o Sites selected represented 70% of Ontario STP discharges
 - o Four seasons sampling "snap shot" of effluent quality
 - o 5 different treatment types:
 - -Lagoons,
 - -Primary (1°),
 - -Secondary (2°),
 - —Secondary nitrifying (2°N), and
 - -Tertiary nitrifying (3°N)

48 STP Survey

- ► Chemical analyses:
 - Conventional contaminants: 13 total
 - o e.g., CBOD5, TSS, TAN, TKN, TP and COD
 - Non-conventional contaminants (NCCs):
 - o metals; phenolics; base neutral extractables; polycyclic aromatic hydrocarbons; chlorobenzenes; organochlorines; halogenated volatiles; non-halogenated volatiles; dioxins and furans; brominated diphenyl ethers; total organic halides and nonyl phenol
 - Total of:
 - o 216 chemicals in influent and effluent
 - o 156 chemicals in sludge

~300,000 data points

- o 215 chemicals in leachate
- ► Acute toxicity in 187 effluent samples

Compounds Detected

Secondary Effluent – Selected Data

Compound	Units	Mean	Max	% Detection	n
Mercury	μg/L	0.016	0.48	14	235
PCBs	ng/L	3.2	47	3	233
Octachlorodioxin	pg/L	12	300	12	26
Benzo(a)pyrene	μg/L	0.02	0.6	2	232
BDE-209 (deca)	ng/L	14.4	160	47	15
BDE-153 (hexa)	ng/L	0.673	1.4	93	15
DEHP	μg/L	1.18	16	21	231

Secondary Sludge – Selected Data

Compound	Units	Mean	Max	% Detection	n
Mercury	μg/L	< 0.05	< 0.05	0	99
PCBs	ng/g dw	465	7600	98	63
Octachlorodioxin	pg/g dw	559	1000	100	25
Benzo(a)pyrene	ng/g dw	1304	19000	100	98
BDE-209 (deca)	ng/g dw	653	3700	100	17
BDE-153 (hexa)	ng/g dw	95	630	100	17

Acute Toxicity Summary

Toxicity by Number of Samples	Primary	Lagoon	2 º	2°N	3°N	Total
# rainbow trout tests	20	11	76	64	16	187
# >50% mortality	8	1	33	0	0	42
% >50% mortality	37	9	43	0	0	22
# Daphnia magna tests	20	11	76	64	16	187
# >50% mortality	0	0	6	2	0	8
% >50% mortality	0	0	8	3	0	4

► Toxicity:

- 22% of samples were toxic to rainbow trout; 8% were toxic to Daphnia magna
- Ammonia in effluent was high enough in concentration to account for 94% of the rainbow trout toxicity and approximately 38% of the Daphnia magna toxicity.

48 STP Survey - Key Findings

- ► Removal of conventionals reflected treatment type i.e., lowest removals from primary highest removals from tertiary
- ► Removal of NCCs was contaminant specific, and influenced by treatment type and operational conditions
- ► Reduction in acute toxicity generally associated with higher level of treatment

Literature Review - NCC Removal by STPs

- ▶ Description:
 - A review of the effectiveness of treatment technologies and operational conditions in the reduction of NCCs in municipal effluents.

Literature Review – Key Findings

- Supported findings of the 48 plant survey
- Treatment technologies for removal of NCCs should be selected based on:
 - Reduction of targeted NCCs
 - Reduction of whole effluent toxicity (WET) (e.g., ozonation may increase the WET while reducing the parent NCCs)
 - Net environmental benefit (e.g., some technologies may require additional energy consumption)

Relative Technology Ranking

Treatment, Chemistry and Toxicity Study

▶ Description:

- Pilot- and full-scale study of 2 Ontario STPs
- Evaluates removal of harmful pollutants (legacy and contaminants of emerging concern) by 6 different sewage treatment technologies
- Assesses toxicity of STP effluent using whole organism tests (standard tests; life cycle tests) and micro-scale endocrine disruption tests
- Investigates links between treatment, chemistry and removal of effluent toxicity
- Baseline study: characterizes conventional activated sludge nitrifying technology without disinfection, chemistry and toxicity.
- Pilot study: evaluates relative effectiveness of different advanced treatment technologies in removing NCCs and toxicity.

Project Design – Baseline Study

► Concurrent 6-month background evaluation of two Ontario STPs both operating as nitrifying activated sludge systems without disinfection (UV only in Summer to early Fall)

Chemistry: x 18 sampling events

Ecotoxicity tests: x 3 sampling events

Screening tests: x 3 sampling events

Project Design – Baseline Study

- Chemistry: Characterized influent and effluent including:
 - TSS, FSS, VSS, DOC, TOC, CBOD₅, COD, TKN, TP, PO₄-, TAN, NO₂-, NO₃-

 Metals, VOCs, alkylphenol polyethoxylates, pharmaceuticals, hormones, industrial organics, halohydrocarbons

▲Ecotoxicity: Environment Canada standardized test methods for:

- o Rainbow trout acute lethality (96-h)
- o Daphnia magna (zooplankton) acute lethality (48-h)
- o Fathead minnow (*Pimephales promelas*) survival, growth (7-d)
- o Ceriodaphnia dubia (zooplankton) survival, reproduction (7-d)
- o Duckweed (Lemna minor) growth inhibition (7-d)
- o Algae (Pseudokirchneriella subcapitata) growth inhibition (72-h)

- o Yeast estrogenic screening (YES) assay
- o Yeast androgenic screening (YAS) assay
- o Thyroid transport receptor (T₄/hTTR) binding assay

Preliminary Findings

- ▶ Both STPs performed as fully nitrifying plants:
 - TAN < 5 mg/L, $(NO_2^- + NO_3^-) > 5 \text{ mg/L}$, TSS < 20 mg/L
- ▶ 216 different chemical parameters analyzed in influent and effluent
- Concentrations of metals in effluents varied by compound:
 - Mercury: 0.03 to $0.13 \mu g/L$ Lead: < 0.02 mg/L
 - Strontium: 0.66 to 1.19 mg/L Barium: 0.02 to 0.04 mg/L
- ▶ In both influents and effluents the phenolics, BNEs, PAHs, chlorobenzenes, organochlorines, organic halides, halogenated and non-halogenated volatiles varied but were generally significantly lower in the effluents and mostly found at or below the their respective MDLs in the effluents:
 - 1,3,5-trimethylbenzene: ≤ 0.2 to 19 μ g/L, 3-ethyltoluene: ≤ 0.2 to 26 μ g/L
 - Chloroform: ≤ 0.2 to $1.1 \mu g/L$, 1,2,4-trimethylbenzene: ≤ 0.2 to $68 \mu g/L$
 - Toluene: ≤ 0.2 to 21 µg/L, p-cresol: ≤ 0.2 to 270 µg/L

Preliminary Findings cont'd.

▶ Bisphenol A and nonylphenol ethoxylates consistently detected in effluents:

Bisphenol A: 57 to1672 ng/L
 4-nonylphenol: 117 to 215 ng/L

4-NP monoethoxylate: 40 to 54 ng/L
 4-NP diethoxylate: 46 to 110 ng/L

▶ Pharmaceuticals and hormones detected in effluents (ng/L):

• 17- α -estradiol: 18 to 40 17- β -estradiol (E₂): 26 to 35

• Carbamazepine: 224 to 439 Diclofenac: 267 to 315

• Ciprofloxacin: 97 to 198 Naproxen: 79 to 356

• Gemfibrozil: 39 to 83 Clofibric acid: 2 to 12

* In most cases a reduction from influent concentrations were observed. Notable exception was Carbamazepine

Preliminary Findings cont'd.

- ► Ecotoxicity:
 - No short- or longer-term sublethal toxicity of either effluent
- ▶ In-vitro Screening Assays:
 - No inhibition of thyroid binding or androgenic effect of either effluent
 - Weak estrogenic effect of STP1, none of STP2

Next Steps – Parallel Pilot Studies

- ▶ Further study at using influent from two full scale plants:
 - P1 is a pilot-scale study with three different treatments
 - P2 is a full/pilot scale study with 4 different treatments
- ► Comparative analysis of different treatment technologies in use or potential for use in Ontario
- Same suite of chemical analysis, short-term and longer-term ecotoxicity tests, and screening tests for endocrine-disrupting activity. Also:
 - Evaluating sludge from each treatment technology
 - Adding PBDEs to influent, effluent and sludge suite of analysis

Next Steps – P1

Next Steps – P2

Pilot plant

Chemistry: x 12 sampling events

Ecotoxicity tests: x 3 sampling events

Biomarker tests: x 3 sampling events

Julie.Schroeder@ontario.ca

Vince.Pileggi@ontario.ca

Sonya.Kleywegt@ontario.ca